Rank bounds for design matrices with block entries and geometric applications
نویسندگان
چکیده
Design matrices are sparse matrices in which the supports of different columns intersect in a few positions. Such matrices come up naturally when studying problems involving point sets with many collinear triples. In this work we consider design matrices with block (or matrix) entries. Our main result is a lower bound on the rank of such matrices, extending the bounds proven in [BDWY12, DSW14] for the scalar case. As a result we obtain several applications in combinatorial geometry. The first application involves extending the notion of structural rigidity (or graph rigidity) to the setting where we wish to bound the number of ‘degrees of freedom’ in perturbing a set of points under collinearity constraints (keeping some family of triples collinear). Other applications are an asymptotically tight Sylvester-Gallai type result for arrangements of subspaces (improving [DH16]) and a new incidence bound for high dimensional line/curve arrangements. The main technical tool in the proof of the rank bound is an extension of the technique of matrix scaling to the setting of block matrices. We generalize the definition of doubly stochastic matrices to matrices with block entries and derive sufficient conditions for a doubly stochastic scaling to exist.
منابع مشابه
Upper and lower bounds for numerical radii of block shifts
For an n-by-n complex matrix A in a block form with the (possibly) nonzero blocks only on the diagonal above the main one, we consider two other matrices whose nonzero entries are along the diagonal above the main one and consist of the norms or minimum moduli of the diagonal blocks of A. In this paper, we obtain two inequalities relating the numeical radii of these matrices and also determine ...
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملImproved rank bounds for design matrices and a new proof of Kelly's theorem
We study the rank of complex sparse matrices in which the supports of different columns have small intersections. The rank of these matrices, called design matrices, was the focus of a recent work by Barak et. al. [BDWY11] in which they were used to answer questions regarding point configurations. In this work we derive near-optimal rank bounds for these matrices and use them to obtain asymptot...
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملUnique low rank completability of partially filled matrices
We consider the problems of completing a low-rank positive semidefinite square matrix M or a low-rank rectangular matrix N from a given subset of their entries. We study the local and global uniqueness of such completions by analysing the structure of the graphs determined by the positions of the known entries of M or N . We show that the unique completability testing of rectangular matrices is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1610.08923 شماره
صفحات -
تاریخ انتشار 2016